TileServer and TileClient implementation

Arthur Hoogervorst

Tamarinde Solutions

In association with

The Programming with Puns Facility

Canada,02/14/01

Introduction

This document will provide information about the setup of the TileServer and TileClient projects (codenamed ‘TileSettled’).

Why a DCOM solution

When programming TileSetter I became aware of the memory it demanded from the computer. On an avarage computer the program eats 8 to 10 MBs. 2 Megabytes are already reserved for the complete Wordlist. Additional

memory is used by additional procedures and ‘graphics’. If the program runs on Windows 95 computers this might cause the program to swap too often to disk. Since most routines have been optimized why not creating a ‘distributed’ server?

The working of Client and Server in plain words

Since the client isn’t expected to call the server for the searches most of the routines can be stripped out, while

preserving the GUI.

Fig 1. an abstract working model

As you see in the picture, the server will be asked for matching words and will send the matches to the client.

These routines can be implemented into the server quite easily: momentarily TileSetter relies on TstringLists to pass data. This is true for both ways of finding matches. To keep the COM implementation ‘Microsoft compatible’ the found words will be passed by using arrays of Variants.

Synchronous development of TileSetter and TileSettled

TileSetter and TileSettled are developed synchronously. Effectively, changes made to TileSetter have to be made to TileSettled and (of course) the other way. Small fixes in the interface can be taken over directly, routines concerning the Find engine do take some extra attention.

The Find Engine

The Find Engine basically contains the following functionality:

1. Find all words with the letters on the rack. Found words will never exceed the length of the letters on the rack.

2. Find all words containing all the letters on the rack. Found words will have a length of the letters of the rack and the maximum length as defined in the dictionary (words in the TWX.TXT file have a maximum length of 12).

3. Find words that match a certain pattern based on letters of the rack. Patterns may include the ‘?’ character.

4. [NEW for version 2.0] Find words that match on the board. Basically this routine looks if the selection matches any word that it can find out of the rack

5. Find if a word exists in the (current) dictionary.

Both functions are implemented in a IIWordFinder DCOM object.

The IWordFinder object

The WordFinder object is implemented as:

GetWordRack(in Arack: WideString, in/out Avarriant: OleVariant, in Anoption: Smallint)

This function implements both the rack based search actions 1 and 2.

Arack:

A string with your rack letters. Use # characters for blanks.

Avarriant:
An array of variants (strings).

Anoption:
0 = Find words with letters of rack

1 = Find words with all the letters of rack

Avarriant is specified as an array of variants in strings. This array will be passed on to the servers internal procedures and (eventually) contain the found results. To support Basic programmers: the first entry of the array is 1, instead of the more common 0.

GetWordSelection(in arack in apattern: WideString, out arrWords: OleVariant)

This function implements the pattern matching routine. As explained before, a pattern may have the wildcard ‘?’ for unknown letters.

Arack:

A string with the rack latters. Use # characters for blanks.

Apattern:
A pattern. Letters that are not known can be replaced with a ‘?’.

ArrWords:
An empty array of variants(strings).

ArrWords will contain the found results. The array is 1 based.

IsValidWord(in aword: WideString, out Value: OleVariant);

This function implemenrs the dictionary look up routine.

Aword:

A valid word (make sure to uppercase the string)

Value:

A Boolean variant.

Value will return True if Aword exists in dictionary, else it returns False.

GetWordAttached(in arrAttachedWords: OleVariant; in arack, apattern: WideString; in/out arrResults: OleVariant)

This function is added since version 2.0 of TileSetter and finds results based on ‘attached words’ to a selection.

ArrAttachedWords:
an array of Attached words including parameters

Arack:

letters on the rack

Apattern:

the selection on the board

ArResults:

an empty array of variants (strings)

ArrAttached words is defined as following: attached word(string), positioninselection, direction, cx, cy

Example: A=Variant

A[0][0] = ‘attache?’, 2, 1, 11, 12

In this implementation, you have to provide the attached word string and its position in the selection. This function is still not fully tested, but should be working as long as you pass the right parameters.

Deploying the server (single computer)

In this Chapter, I’m only going to discuss the installation of the server on a single computer. Deploying DCOM servers on a network is far more specialistic and requires some expertise or knowledge of systems configuration.

Registering the server application

Copy the TileServer executable to your Windows directory. Go to Start->Run and type TileServer /regserver (or use a dosshell [command])

The TileServer has now been registered. Make sure you copy the TWX.txt too

Registering the type library
You must register the type library too. Normally this can’t be done by regserver. For VB (or VBA) this is rather simple:

- Open the Object Browser (F2)

- Open up the References window (menu Tools)

- Click Browse… and navigate to your tileserver.tlb

- Press OK

- Make sure you checked the checkbox in front of the item ‘TileServer Library’

Look in the Object Browser and try to find the TileServer Object. Check out the 4 member functions.

Deploying the server (network)

In this chapter I’m globally going to discuss how to deploy the applications on a Windows based network. Naturally the server is to be installed on the ‘Network’ server.

Server computer
- Copy the TileServer to the windows directory. Open up a command shell and type ‘TileServer /regserver’.

- Copy the TWX.txt file (the dictionary) to the same directory.

- Run the DCOMcnfg application. Find the IwordFinder Object.

- Authentication: Connect

- Enable ‘Run from this computer’

- Make a group WordFinder and add your users for this group

- Set the Identy on ‘The Launching user’ (or use a specific user).

Client computer

- Copy the TileClient.exe to a directory

- Register the tileserver.tlb file

- Make sure this user has a valid account on the server.

Conclusion

For your convenience, this document contains a macro that shows how to call the several functions of the TileServer.

Send matching words

Get matching words

The TileSetter Server

The Tilesetter Client

Computer 1

Computer 2

